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Synopsis 

The polymerization of ARB type reversible step growth polymerization in semibatch reactors 
has been simulated. It is assumed that the condensation byproduct W and the monomer PI 
both can vaporize, but P, is refluxed back to the reactor. Raoults law as well as Flory-Huggins 
theory have been used to account for vapor-liquid equilibrium. The degree of polymerization, 
pn, and the polydispersity index DN have been computed for various situations. The results 
are found to be most sensitive to the total pressure and the equilibrium constant. A limiting 
total pressure history Pdt)  has been obtained, going below which does not help to increase 
pn. The final set of equations incorporate both equalities as well as inequalities, and a simple 
and efficient computational scheme has been suggested to solve them. 

INTRODUCTION 

Several studies' on the simulation of reversible step growth polymeriza- 
tions under various reactor conditions have been reported recently. This is 
because most commercial step growth polymerizations, e.g., PET, nylon 6, 
nylon-6,6, etc., are indeed reversible. Various physical phenomena like dif- 
fusion of the condensation byproduct and heat transfer are known to in- 
fluence reactor performance significantly. In this paper, the role of diffusion 
on reactor performance under operating conditions usually encountered in 
the first stages of PET and nylon 6 manufacture is studied. The simplest 
reaction scheme, viz., starting from ARB monomer, with A and B being the 
reactive functional groups, is considered here; however, since the incor- 
poration of other side reactions= clouds away some important mathemat- 
ical (both analytical and Zitmerical) complexities. In our earlier work on 
the optimizatior- ~f PET reactors with mass-transfer it has 
been found that these computational difficulties lead to serious problems, 
and it is necessary that one develops appropriate optimization algorithms 
using simplified kinetics before further progress can be made in that di- 
rection. This study on the simulation of such reactors, therefore, represents 
the first step in this direction. 

The progress of reversible step growth polymerization reactions of ARB 
monomers in a closed reactor can be represented schematically by 
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k P  P, + Pmp-P,+, + w 
kb= kp/K 

(1) 

where P, and P, are the n- and m-mers, W is the low molecular weight 
condensation byproduct, and kp and kk are the functional group reactivities. 
It can easily be shown' that pA,  the conversion of functional group A (or 
B), approaches an asymptotic (equilibrium) value given by 

where pqe is the equilibrium degree of polymerization. The value of the 
equilibrium constant K for some polymerizations of commercial interest 
are extremely unfavorable. For example, for the polymerization of PET 
from the monomer, bis hydroxyethyl terephthalate, the value of K is about 
0.5, independent of temperature.2 For this value of K, eq. (2) predicts the 
equilibrium degree of polymerization, p,,., as 1.71, which is too low a value 
to be of much interest. It is, therefore, evident that in order to obtain values 
of pqe of about 100, which is of commercial importance, one must drive 
reaction (1) in the forward direction. One way of doing this is to remove 
the low molecular weight byproduct W by application of high vacuum (open 
reactors). 

Several examples of industrial importance may be mentioned in which 
the byproduct W must be removed by some means. In nylon 6 polymeri- 
zation, even though the value of K is several fold higher than for PET, 
optimal operation of the reactor requires that the condensation byproduct, 
water, be removed at some intermediate stage of polymerization.6 One way 
of achieving this is to bubble inert gas through the reaction m a s ~ . ~ J ~  In 
nylon-6,6 polymerization too, the equilibrium constant is low, and vacuum 
is applied in order to obtain high molecular weight polymer.11J2 In all these 
cases, the condensation byproduct diffuses towards a liquid-vapor interface, 
where its concentration is lower and is determined by vapor-liquid equi- 
librium relations. A concentration gradient is established in the reaction 
mass, and concepts of mass transfer with simultaneous step growth poly- 
merization are required to explain the performance of the reactor. 

During the polymerization of PET, the viscosity of the reaction mass 
undergoes a significant increase from a few centipoise at low conversions 
to over about2 8000 P finally. The diffusivity of the small molecule W 
through the reaction mass towards the vapor-liquid interface, thus, varies 
over an extremely wide range13J4 and can, at times, be very low. This ne- 
cessitates the use of special equipment which can enhance mass transfer 
rates. Also, depending upon the relative resistances of the mass transfer 
and the polymerization steps, different analytical models must be used for 
accounting for the mass transfer occurring in the specified geometry of the 
reactor. At one end of the spectrum lies the situation, where pn is about 
100, the viscosity is of the order of 8000 P (for PET), and the mass transfer 
coefficient is extremely small compared to the reaction rate constant. The 
mass transfer resistance cannot then be neglected and spatial variations 
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of the concentration of W must be accounted for. Obviously, it is desirable 
to reduce the mass transfer resistance as much as possible by using special 
thin film reactors,15-19 in order to reduce the length of the diffusion path. 
Such finishing reactors have been m ~ d e l e d , ~ ~ . ~ ~  but optimization studies for 
these have yet to be carried out. 

At the other end of the spectrum of mass transfer with chemical reaction 
lies the situation where the viscosity of the reaction mass is low (for PET 
reactors,2 till pn of about 30, when the viscosity is below about 40 P), and 
the diffusivity and the corresponding mass transfer coefficient are high 
compared to the rate of chemical reaction. It can then be easily assumed 
that there is no resistance to mass transfer. In fact, Ravindranath and 
Mashelkar2 claim that the value of tZLs (the product of the mass transfer 
coefficient KL and the interfacial area per unit volume s) for a turbine- 
agitated PET reactor with pn = 30 is about s-’ while the pseudo-first- 
order reaction rate constant is about s-’, which is an order of magnitude 
lower. The rates of mixing under such situations are also very large com- 
pared to the rates of reaction. It can, therefore, be assumed that there are 
no spatial gradients present in the reaction mass in the concentration of 
W and the other species. The value of [W] (square brackets representing 
concentration) at any time t in the entire reaction mass is thus governed 
solely by vapor-liquid equilibrium conditions existing at the interface, 
which, in turn, are determined by the pressure and temperature applied. 
Turbine-agitated semibatch reactors are usually employed under such con- 
ditions wherein the mass transfer resistance is negligible. The removal of 
the volatile byproduct as well as the consequent reduction in the volume 
of the reaction mass must be correctly accounted for in the mole balance 
equations for such semibatch reactors. In this paper, we address ourselves 
to the simulation of such reactors. The polymeric oligomers, other than 
monomer molecules, are assumed not to vaporize, and the vapor and liquid 
phases are assumed to be in thermodynamic equilibrium at all times. It is 
further assumed for the sake of mathematical simplicity that the total 
pressure applied on the reactor is specified independently. In simulating 
industrial reactors, one must solve the reactor equations simultaneously 
with the “characteristic” equations of the vacuum-producing equipment. It 
is found that the resulting set of equations even with this simplification, 
incorporate some inequality constraints and special procedures have to be 
used to solve them. 

FORMULATION 

The mathematical model developed herein is for a semibatch reactor 
having negligible mass transfer resistance and short mixing times. Such 
models are useful to characterize the behavior of the reactors used in the 
first two stages of PET manufac t~ re ,~?~  or of batch nylon 6 reactors. In 
addition, the analysis can easily be modified to apply to continuous reactors, 
e. g., the top zone of the VK column used for nylon 6 p r o d u ~ t i o n . ’ ~ ~ ~ ~  The 
kinetic scheme used here, however, is that given by eq. (1). The reactor is 
shown schematically in Figure 1. It is assumed that the monomer P1 and 
the volatile condensation byproduct W both can vaporize and are present 
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Fig. 1. A semibatch reactor with ARB polymerization. 

above the liquid reaction mass at a concentration governed by vapor-liquid 
equilibrium. Pz, P3, . - -, are assumed not to volatilize. The vapor consisting 
of P, and W is continuously removed, and the monomer is separated and 
refluxed back to the reactor completely. This approximates the situation 
present in PET and nylon 6 reactors closely. The total pressure above the 
reactor is assumed to be PT, the temperature T, and the volume of the liquid 
phase (reactor volume) is V, all these being, in general, functions of time. 
The analysis given below can easily be extended to the case where more 
or fewer volatile components are p r e ~ e n t . ~  Since the reactor volume Vvaries 
with time, mainly due to the vaporization of the condensation byproduct, 
it is more convenient to work in terms of the total moles of the various 
components than with their concentrations. Lower case symbols are used 
to represent these; for example, p1 represents the total moles of species P, 
in the liquid phase at time t and w, the total moles of W in the liquid phase. 
Mole balance equations over the control volume shown by dotted lines in 
Figure 1 can easily be written and appropriately summed up to give 

- Qw 
dw 
dt KV2 

2A: w(Al - h3) 
dt 

(3c) 

(3d) 

where it has been assumed that the reaction takes place only in the liquid 
phase. In eq. (3), A. f UP] = E:=, p,, A, = E;=, np, = Al,o (since the total 
number of repeat units in the control volume remains constant), hk = 
Z;=l nkpn, k = 2,3, - - - and Q& (> 0) is the molar rate of removal of the by- 
product W from the control volume at time t. The volume Vof the reactor 
can be written as 
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dV - = - u w Q w  
dt (4a) 

or 

v= VO - s' t = o  uwQ;v(t) dt  (4b) 

where Vo is the volume at t = 0 and uw is the molar volume of (liquid) W 
which is, in general, a function of temperature. 

Equations (3) and (4) constitute five simultaneous, ordinary differential 
equations for the six unknown variables p,, h,,, w, A2, V, and QW (since 
A, = hl,o) provided the following commonly used moment closure equation 
is used: 

Thus, one more equation is required. This is found by using vapor-liquid 
equilibrium conditions. If yw and ypI represent the mole fractions of W and 
P1 in the vapor phase and xw, xpl, and xp, the mole fractions of W, P,, and 
P in the liquid phase, Raoult's law can be used as a first approximation to 
give 

In eq. (61, Ppl and Pw are the vapor pressures of pure P, and W at the 
temperature T of the reaction mass, expressions for which are available in 
various handbooks,24 while Kw (-yw/xw) and Kpl (=ypl/xpl) are known as 
the partition coefficients. The mole fractions in the vapor phase must add 
up to unity in the absence of air. Equation (6) can be used to write, more 
generally, 

Equation (7) gives the fifth equation which must be solved simultaneously 
with eqs. (3H5) in order to obtain the values of p l ,  Ao, w, A2, V; and QW as 
a function of time. 

The special form of eq. (7) and the requirement that QW 2 0 must be 
noted. The inequality in eq. (7) holds when, in addition to W and P,, there 
is some air present in the vapor space of the reactor. The special form of 
these equations leads to some interesting computational difficulties, which 
is best illustrated by discussing the strategy of solution. If the solution is 
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known at time t, one starts by assuming Q& = 0 and solving eqs. (3a-d) 
simultaneously with eq. (4), using the fourth order Runge-Kutta method 
to obtain p l ,  A,, w, and Az at t + At. These values are then substituted on 
the left-hand side (LHS) of eq. (7). If this LHS is I 1, this means that there 
is some air present in the system and the assumption of Q& = 0 is correct. 
If the LHS is > 1, the assumption of Q& = 0 is incorrect, and one must 
assume a positive value of Qw, reintegrate eqs. (3a-d) along with eq. (4) and 
check the LHS of eq. (7) again. This is repeated till convergence is obtained. 
One must remember, however, that one cannot increase the value of Q& 
indefinitely to satisfy eq. (7), since a stage comes when the value of w 
becomes negative. Thus, it is observed that Q& can lie only between 0 and 
some maximum value, &&,,,, at which point w = 0, i.e., whatever W is 
produced by reaction, flashes. The LHS of eq. (7) at this point is > 1. 
Physically this means that some air must leak into the vapor space to keep 
the total pressure at the specified value of P p  In industrial situations, the 
pressure PT will adjust itself based on the “characteristics” of the vacuum 
producing equipment, and so the violation of eq. (7) is a mathematical 
aberration arising from the fact that one is trying to solve the equations 
for the reactor independent of that of the vacuum producing device. Such 
nuances have probably not occurred in the earlier simulations of PET or 
nylon 6 semibatch  reactor^^^.^^ for the conditions studied, but have posed 
severe computational difficulties in the optimization studies carried out on 
PET reactor~,~J and justifies the present, more fundamental though sim- 
plified analysis of semi-batch reactors. 

The use of Raoult’s law [eq. (611 to describe vapor-liquid equlibrium can 
probably be justified only in the early stages of the reaction when there is 
very little polymer present in the reaction mass. As the polymer builds up, 
Raoult’s law overestimates the vaporization and, consequently, overesti- 
mates the value of pn. An alternative approach is to use the Flory-Huggins 
t h e ~ r y ~ ~ , ~ ~  to describe vapor-liquid equilibrium. Equation (6) must then be 
replaced by 

yplPT = partial pressure of P1 in vapor 

ywPT = partial pressure of W in vapor 

where vpl, vw, and are the volume fractions of P1, W, and the non- 
volatile species (Pz, P3, e-. 1, respectively, in the liquid phase and ,y is the 
Flory-Huggins interaction parameter (these equations are based on the 
Flory Huggins theory for a single “solvent” or a single volatile species). 
The approximate equations are valid for vpZdp, N 1 and when pn becomes 
large. 

The volume fractions of W and PI can be related to the total moles w 
and p 1  as 
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P l U P l  vp, = - 
V 

W U W  vw = - 
V 

In these equations, up, is the molar volume of the (liquid) monomer. Equation 
(9), when used with eq. (81, leads to the following relationships for the 
partition coefficients: 

The partition coefficients are now observed to be functions of composition, 
as well as of Tand PF Since yw and ypl must sum up to unity in the absence 
of air, this gives 

which must be used in place of eq. (7). The value of interaction parameter 
x in eq. (11) is usually taken3 as 0.5 (which is the value corresponding to 
the Flory "theta" conditions), in the absence of any experimental infor- 
mation. The restriction on Q;V because of w becoming negative still applies. 

The complete set of equations to be solved simultaneously may be non- 
dimensionalized, using 

The final set of equations for isothermal reactor operation are summarized 
in Table I. It is observed that there are six independent dimensionless 
parameters: u t ,  ui: ,  P$,/PT7 Pw/PT7 K, and x. The effect of varying each of 
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TABLE I 
Final Set of Equations for Semibatch Reactors 

Mole balance 

dV" 
dr' 
- = - Q;I UC 

1 w *  (A;, - Pi) - = - -  
dT* K 

dw* 1 w' (1 - &J 
dr*  v' K 1 - Q b  

1 dX; 1 w *  (1 - A2 
- = - [ 2 +  dT* v" 3K 

Moment closure 

A, (2A, A;, - 1) 
A;, 

A; = 

Equilibrium 

(a) 

(d) 

(e)  

Physical constraint 

w * > o  
Initial conditions 

these around some reference values is studied here in order to determine 
the sensitivity of the performance of the reactor to these parameters. 

The initial conditions given in Table I [eq. (i)] correspond to the case when 
pure monomer (PI) is fed to the reactor at temperature T. The values of 
the independent parameters are estimated based on conditions existing in 
the first stage of PET reactors (it being emphasized that ARA + BRB 
polymerization occurs in these, instead of ARB polymerization being studied 
herein). These are called as reference values hereafter and are 

v;V = 0.5 

U i I  = 1.0 

e1/PT =. 0.2161 

& / P T  = 7.6965 

K = 1.0 

x = 0.5 

(13) 
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The value of u;V of 0.5 has been obtained assuming A,,o/ Vo of 10 mol/L (the 
mean of the values for pure DMT and pure ethylene glycol at 200°C) and 
uw of 0.0476 L/mol (for methanol at 200"C).24 Similarly, the reference value 
of u;, has been taken as unity since the feed is assumed to be pure monomer. 
The values of Pp,/PT and Pw/PT have been estimated as 0.2161 and 7.6965 
using the vapor pressure of ethylene glycol2' at 200°C as 1.0806 atm, that 
of methanol3 as 38.483 atm and PT as 5 atm. The value of PT has been 
assumed to be higher than 1 atm since it was found that if PT was taken 
as 1 atm, the entire feed vaporizes instantaneously as soon as it enters the 
reactor. 

RESULTS AND DISCUSSION 

The numerical technique used for integrating the equations in Table I 
has already been discussed earlier in this paper [below eq. (711. The binary 
chop method2s has been used to estimate the value of Q;V if it is above zero, 
and convergence is assumed to occur when the absolute value of the LHS 
of eq. (gl> or (g2) in Table I is less than a value E = 0.0001. This method of 
integration is different from that used in the literature3 in which the op- 
eration of the reactor with simultaneous chemical reaction and vaporization 
was modeled as a sequence of two steps: chemical reaction without any 
vaporization is assumed to occur for a time AT*,  and this is followed by an 
instantaneous flashing operation, in which the volatile component, if in 
excess, vaporizes and the system attains thermodynamic equilibrium. Even 
though these two numerical techniques are expected to give identical results 
as AT* approaches zero, the technique developed in this paper is far easier 
to enmesh with reactor optimization algorithms in addition to being fun- 
damentally rigorous. 

Several tests were made to ensure that our computer program was free 
of errors. The value of the time increment, AT*, was reduced from 0.01 to 
0.0001 and the results were found to be independent of the step size. On 
running the program at a very high total pressure, PT, of 50 atm, when 
evaporation is not expected to occur it was found that Q;V was zero through- 
out, and V* was unity. In addition to this, the results obtained with this 
run matched earlier results29 on reversible ARB polymerization in closed 
reactors. Reduction of the value of E from 0.0001 to 0.00001 also did not 
alter the results significantly. In view of this, all runs made hereafter used 
E = 0.0001 and AT* = 0.01. The computer (DEC 1090) time required for 
one set of parameter values was about 45 s. 

The number average chain length, p ,  (=A;/&) and the polydispersity 
index DN { = (Ai/Ai)/(A;/AJ] for the reference conditions [eq. (1311 are shown 
in Figure 2 as a function of the dimensionless time T * .  In the absence of 
any vaporization, eq. (21, along with 1'Hospital's rule, gives the equilibrium 
value of p ,  as 2.0. The vaporization of W leads to higher values of p ,  than 
this, depending on the extent of vaporization. Use of the Flory-Huggins 
theory for vapor-liquid equilibrium leads to lower evaporation of W and 
therefore gives polymer having lower p ,  than predicted by the use of 
Raoult's law. It is found that the values of p ,  are quite sensitive to the 
value of x, the interaction parameter. Indeed, Figure 2 predicts that the 
better the solvent W (the lower the value of x), the lower its vaporization 
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Fig. 2. Number average chain length (-) and polydispersity index (---I as a function of 
dimensionless time. 

and the lower the value of pn. This is consistent with intuitive expectations. 
The lower values of DN when x is reduced are partly because of the lower 
conversions attained. 

An interesting feature for polymerization in semibatch reactors is dem- 
onstrated by Table 11. In this table, the value of DN obtained in semibatch 
reactors is compared to the value of DN at the same functional group con- 
version, p A ,  for irreversible ARB polymerization. In all the cases, it is found 
that these two values of DN are within about 1.5%, an error which is at- 
tributable to the use of the moment closure equation (5). Thus, it can be 
inferred that, in semibatch reactors, the time history of pn (or p A )  depends 

TABLE I1 
DN for the Semibatch Reactors Compared with D N  for Irreversible ARB Polymerization at 

the Same Conversion 

Irreversible ARB 

as semibatch reactor) 
Semibatch reactor (ref. run) polymerization @ A  same 

T *  = 20 

1 
p A = l - -  DN 

EL. Pn (computed) DN = 1 + PA 

Raoult 7.835 0.872 1.889 
FH, x = 0.5 6.008 0.833 1.855 
FH, x = 0.0 4.673 0.786 1.813 
FH, x = -0.5 3.634 0.7250 1.758 

1.872 
1.833 
1.786 
1.725 
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on the conditions present in the reactor, but the value of DN is almost 
uniquely determined once p A  is known, and Flory’s most probable distri- 
bution with the appropriate value of p A  applies. 

Figure 3 shows plots of Q;N as a function of r* for the reference conditions. 
For the case of Raoult’s law, it is found that Q;N = 0 for some time at the 
beginning, when there is some air present in the vapor space (in fact, PT 
has been deliberately chosen to be high so that vaporization is prevented 
at T *  = 0). Q;N shoots up soon thereafter and then decreases slowly with 
r*. At large values of r* (-40) near equilibrium conditions prevail with 
Q;N = 0 and the LHS of eq. (gJ (Table I) equal to zero. A similar qualitative 
behavior is found for Q;N when the Flory-Huggins (FH) theory is used with 
x = 0.5. It is interesting to observe that at small r*, the value of Q;N predicted 
by the FH theory is higher than that predicted by Raoult’s law. This explains 
the higher p, for the FH (x = 0.5) case in Figure 2, than for the Raoult’s 
law case. At larger r*, the FH theory predicts lower Q ; N ,  and so, lower fin. 

The sensitivity of the final properties of the polymer to the parameters 
is now studied by systematically varying them around the reference values 
given in eq. (13). Figure 4 shows the effect of P T  (both Pp,IPTand & l P T  

are simultaneously changed). At higher pressures, the vaporization is sup- 
pressed and equilibrium conditions are attained at lower values of p, and 
DN. It is interesting to observe that the FH theory gives higher Q;N and so, 
higher pn, compared to Raoults law when values of pn are low. The effect 
of varying K is shown in Figure 5. Increasing K favors the forward reaction 
in eq. (1) and leads to higher values of pn The values of DN are found to 

7* 

Qb as a function of r* for the reference conditions. Fig. 3. 
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of K are indicated. 
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get closer to the value of 2.0 characterizing irreversible ARB polymerization 
at complete conversion. Once again, the higher values of p, for the FH case 
at low values of T* are to be noted. Figure 6 similarly illustrates the effect 
of varying the physical properties of W, viz., ufv. The equations of Table I 
indicate that when Raoults law is used, ufv enters only in the equation for 
V*. Thus, it would be expected that the effect of altering ufv would not be 
significant, and would be associated with the change in the concentrations 
of the various species as W vaporizes. This is indeed found to be true. On 
using the FH theory, however, ufv enters in the vapor-liquid equilibrium 
equation as well, and influences p,, more significantly. The higher is ufv, 
the larger is found to be pn. The effect of varying u& is not studied since 
pure monomer feed is assumed in this study, for which u,, = 1. Figure 7 
shows that altering the parameter Pp,/PT has relatively little effect on p, 
and DN, at least over the ranges studied. However, Figure 8 shows that 
Pow/ PT does influence the results significantly. 

It is possible to determine the total-pressure history, PT ( T * ) ,  required to 
give the maximum p, in a semibatch reactor. This is the situation when 
w *  in the liquid phase is zero at  all times, i.e., whatever W is produced by 
chemical reaction, is flashed instantaneously. Under these conditions, 
Qfv = hi2/ V* and the LHS of eqs. (gl) and (g2) of Table I are zero. If PAT*) 
is lowered still further, air must leak into the vapor space, but p,, would 
remain unchanged. This PAT*) thus represents the limiting conditions for 
operating an isothermal semibatch reactor. Figure 9 shows this limiting 

-- 

FH 0.8 
--_- -- _ _ _ _  - __-------- ---___--_ 

1.9 _ _ _ _ _  ---: 
FH 0.5 15- 

__---------- - - -________  
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FH 0.8 

z 
0 

A.O.8 1.5 

FH 0.5 

FH 0 . P  

i 

5 -  

I I 1 I 1.1 
5 10 15 20 

T* 
Fig. 6. Effect of varying u; on pn (-) and DN (---). R and FH denote Raoult and Flory- 

Huggins. All other parameters are at their reference values. Values of ub are indicated on 
the graphs. 
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Fig. 9. PT (7') to give maximum p. (7:) in a semibatch reactor. pB, = 1.0806 atm, pR = 
38.483 atm. All other parameters are at their reference values. PT for the FH case as T* = 0 
is 4.843 atm. It is assumed that the feed does not flash at T* = 0. 

pressure history for reference conditions for both the cases when Raoult's 
law is used as well as when the FH theory is used. It turns out that in this 
computation, the equations for p i ,  hi, A;, and V* are uncoupled and can be 
solved independently, while the equation for w *  can be used to compute 
Qa and the thermodynamic equilibrium condition can be used to compute 
PF The values of p, and DN are thus independent of the relation used to 
predict vapor liquid equilibrium. Figure 9 also shows plots of p,,(~*) and 
DJT*) obtained when this computed PT(7*) is applied to the reactor, and 
represent the maximum permissible values (under the values of the other 
operating parameters). 

CONCLUSIONS 

Semibatch reactor operation has been modeled in this study for simple 
ARB step growth polymerization. It is found that the total-pressure and 
the equilibrium constant are the most significant operating variables. The 
limits of reactor operation have also been worked out. The formulaton 
presented herein can easily be extended and optimization algorithms de- 
veloped which can overcome the special problems posed by the inequality 
conditions in the mathematical model. 
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